

Exercise
Solve the problem below using Column Generation for linear programming

$$
\begin{aligned}
& \text { maximize } 2 x_{1}+4 x_{2}+x_{3} \\
& \text { subject to: } 2 x_{1}+x_{2}+x_{3} \leq 10 \\
& x_{1}+x_{2}-x_{3} \leq 4 \\
& 0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6
\end{aligned}
$$

Master Problem

$$
\begin{align*}
\operatorname{maximize} & z=\sum_{j=1}^{p_{R}}\left(c^{\top} v_{j}\right) \lambda_{j} \tag{1}\\
\text { subject to: } & \sum_{j=1}^{p_{R}}\left(A_{1} v_{j}\right) \lambda_{j} \leq 10 \tag{2}\\
& \sum_{j=1}^{p_{R}}\left(A_{2} v_{j}\right) \lambda_{j} \leq 4 \tag{3}\\
& \sum_{j=1}^{p_{R}} \lambda_{j}=1 \tag{4}
\end{align*}
$$

Consider μ_{1}, μ_{2} e ν the dual variables related to the constraints 2,3 and 4 respectively. p_{R} are the columns of the restricted master problem.
Auxiliary Problem

$$
\begin{aligned}
\operatorname{maximize} & c r=\left(2-2 \mu_{1}-\mu_{2}\right) x_{1}+\left(4-\mu_{1}-\mu_{2}\right) x_{2}+\left(1-\mu_{1}+\mu_{2}\right) x_{3}-\nu \\
\text { subject to: } & 0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6
\end{aligned}
$$

Let $x_{1}=x_{2}=0, x_{3}=1$ be the initial solution. Master problem for column 1:

$$
\begin{aligned}
\operatorname{maximize} & z=1 \lambda_{1} \\
\text { subject to: } & 1 \lambda_{1} \leq 10 \\
-1 \lambda_{1} & \leq 4 \\
\lambda_{1} & =1
\end{aligned}
$$

