

Exercise Solve the problem below using Column Generation for linear programming

maximize
$$2x_1 + 4x_2 + x_3$$

subject to: $2x_1 + x_2 + x_3 \le 10$
 $x_1 + x_2 - x_3 \le 4$
 $0 \le x_1 \le 4, \ 0 \le x_2 \le 6, \ 1 \le x_3 \le 6$

Master Problem

maximize
$$z = \sum_{j=1}^{p_R} (c^{\top} v_j) \lambda_j$$
 (1)

subject to:
$$\sum_{j=1}^{p_R} (A_1 v_j) \lambda_j \le 10$$
(2)

$$\sum_{j=1}^{p_R} (A_2 v_j) \lambda_j \le 4 \tag{3}$$

$$\sum_{j=1}^{p_R} \lambda_j = 1 \tag{4}$$

Consider μ_1 , $\mu_2 \in \nu$ the dual variables related to the constraints 2, 3 and 4 respectively. p_R are the columns of the restricted master problem.

Auxiliary Problem

maximize
$$cr = (2 - 2\mu_1 - \mu_2)x_1 + (4 - \mu_1 - \mu_2)x_2 + (1 - \mu_1 + \mu_2)x_3 - \nu$$

subject to: $0 \le x_1 \le 4, \ 0 \le x_2 \le 6, \ 1 \le x_3 \le 6$

Let $x_1 = x_2 = 0$, $x_3 = 1$ be the initial solution. Master problem for column 1:

maximize
$$z = 1\lambda_1$$

subject to: $1\lambda_1 \le 10$
 $-1\lambda_1 \le 4$
 $\lambda_1 = 1$